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Summary 
Successful training in complex environments is normally accomplished through the 
interaction of a trainee and a skilled expert, but due to resource constraints, experts’ use 
in training can be problematic.  Computational models that learn task performance 
subject to human constraints may be useful in understanding the details of training and 
offer training suggestions that can be implemented in computerized tutoring systems. 
 
This report investigates the training implications provided by models built for two 
domains: learning biology in an online course and learning basic flight maneuvers in an 
unmanned aerial vehicle simulator. The biology model uses rules to decide on study 
behavior. The flight maneuver model uses instances of expert behavior to decide on 
correct flight control actions. Both models are implemented in the ACT-R cognitive 
architecture. 
 
In modeling both the biology and flight maneuver domains, it was found that information 
needed for good performance is at some level available to the trainee but might not be 
used. In the biology domain, the option to re-visit a previous topic is implicitly available. 
In the flight maneuver domain the rate of change information is indirectly available. The 
key insight for training is to make explicit to the student these aspects of the 
environment/representation so that the natural learning mechanisms can unfold in more 
productive ways. This relates to the idea of optimal training because our goal is to take 
best advantage of the human learning system. Essentially, the path to optimal training in 
both these cases involves finding the key domain feature to which learning progress is 
very sensitive. Based on our results, we would posit that explicitly training on these key 
features would promote more efficient learning. This position is in line with results such 
as Klahr and Nigam (2004), which show that direct instruction is more effective than 
discovery learning. 



1 Introduction 
Successful training in complex environments is normally accomplished through the 
interaction of a trainee and a skilled expert, but due to resource constraints, experts’ use 
in training can be problematic.  Computational models that learn task performance 
subject to human constraints may be useful in understanding the details of training and 
offer training suggestions that can be implemented in computerized tutoring systems. 
 
This report investigates the training implications provided by models built for two 
domains: learning biology in an online course and learning basic flight maneuvers in an 
unmanned aerial vehicle simulator. The biology model uses rules to decide on study 
behavior. The flight maneuver model uses instances of expert behavior to decide on 
correct flight control actions. Both models are implemented in the ACT-R cognitive 
architecture. 
 
ACT-R (Anderson et al., 2004) is a production system theory that tries to explain human 
cognition by developing a model of the knowledge structures that underlie cognition.  
There are two types of knowledge representation in ACT-R -- declarative knowledge and 
procedural knowledge. Declarative knowledge corresponds to things we are aware we 
know and can usually describe to others.  Examples of declarative knowledge include 
“George Washington was the first president of the United States” and “An atom is like 
the solar system”. Procedural knowledge is knowledge which we display in our behavior 
but which we are not conscious of.  For instance, no one can describe the rules by which 
we speak a language and yet we do.  In ACT-R declarative knowledge is represented in 
structures called chunks and held in the Declarative module, whereas procedural 
knowledge is represented as rules called productions and held in the Procedural module. 
A production rule is a statement of a particular contingency that controls behavior.  An 
example might be  
 
IF the goal is to add two digits d1 and d2 in a column 
    and d1 + d2 = d3 is retrieved 
THEN set as a subgoal to write d3 in the column 
 
The condition of a production rule (the IF part) consists of a specification of the chunks 
in various modules.  The action of a production rule (the THEN part) consists of 
modifications of the chunks in modules, requests for other chunks to be placed into the 
modules, or requests for other actions to be taken.   
 

1.1 Subsymbolic attributes of ACT-R 
At a subsymbolic level, facts have an activation attribute which influences their 
probability of retrieval and the time it takes to retrieve them. Rules have a utility attribute 
which influences their probability of being used. The activation Ai of a chunk i is 
computed from three components – the base-level, a context component and a noise 
component. The base-level activation Bi reflects the recency and frequency of practice of 
the chunk. The equation describing learning of base-level activation for a chunk i is 
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where n is the number of presentations for chunk i, tj is the time since the jth presentation, 
and d is the decay parameter.  
 
The equation for the activation Ai of a chunk i including context is defined as: 
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Measures of Prior Learning, Bi:  The base-level activation reflects the recency and 
frequency of practice of the chunk as described above. 
Across all modules: The elements k being summed over are the modules. 
Sources of Activation: The elements j being summed over are the chunks which are in the 
slots of the chunk in module k.  
Weighting: Wkj is the amount of activation from source j in module k.   
Strengths of Association: Sji is the strength of association from source j to chunk i.   
 
The weights, Wkj, of the activation spread defaults to an even distribution from each 
module. The total amount of source activation for a module is called Wk and is settable 
for each module.  The Wkj values determined by the following equation: 
 

Wkj = Wk / nk   (Equation 1.3) 
 
where nk is the number of chunks in the slots of the chunk in module k. The strength of 
association, Sji, between two chunks is 0 if chunk j is not in a slot of chunk i or is not 
itself chunk j and is set using this equation when chunk j is in a slot of chunk i  or is itself 
chunk j: 

 )ln( jji fanSS −=   (Equation 1.4) 
Where S is a parameter to be estimated (set with the maximum associative strength 
parameter)  
And fanj is the number of chunks in which j is the value of a slot plus one for chunk j 
being associated with itself. 
 

1.2 Partial matching in ACT-R  
In some situations a chunk that exactly matches a request cannot be retrieved but it is 
desirable to retrieve a closely matching chunk. This is what the partial matching 
mechanism is designed to address. When partial matching is enabled, the similarity 
between the chunks in the retrieval request and the chunks in the slots of the chunks in 
declarative memory are taken into consideration.  The chunk with the highest activation 
is still the one retrieved, but with partial matching enabled that chunk might not have the 
exact slot values as specified in the retrieval request. 



 
The activation Ai of a chunk i is defined fully as: 
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 Bi, Wkj, Sji, and ε have been discussed previously.  The new term is the partial matching 
component. 
 
Specification elements l: The matching summation is computed over the slot values of the 
retrieval specification.  
Match Scale, P: This reflects the amount of weighting given to the similarity in slot l.  
This is a constant across all slots with the value and a typical setting is 1.0. 
Match Similarities, Mli: The similarity between the value l in the retrieval specification 

and the value in the corresponding slot of chunk i.  
 

1.3 Recall probability in ACT-R  
If we make a retrieval request and there is a matching chunk, that chunk will only be 
retrieved if it exceeds the retrieval activation threshold, τ. The probability of this 
happening depends on the expected activation, Ai, and the amount of noise in the system 
which is controlled by the parameter s: 
 
 
 

(Equation 1.6) 
 
 
 
Inspection of that formula shows that, as Ai tends higher, the probability of recall 
approaches 1, whereas, as τ tends higher, the probability decreases. In fact, when τ = Ai, 
the probability of recall is 50%. The s parameter controls the sensitivity of recall to 
changes in activation. If s is close to 0, the transition from near 0% recall to near 100% 
will be abrupt, whereas when s is larger, the transition will be a slow sigmoidal curve. 
 

1.4 Choice probability in ACT-R  
If there are a number of productions competing with expected utility values Uj the 
probability of choosing production i is described by the formula 
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where the summation is over all the productions which are currently able to fire (their 
conditions were satisfied during the matching).  Note however that that equation only 
serves to describe the production selection process.  It is not actually computed by the 
system.  The production with the highest utility (after noise is added) will be the one 
chosen to fire. The utilities of productions can be adjusted according to the rewards they 
receive. If Ui(n-1) is the utility of a production i after its n-1st application and Ri(n) is the 
reward the production receives for its nth application, then its utility Ui(n) after its nth 
application will be 
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where α is the learning rate. This is also basically the Rescorla-Wagner learning rule 
(Wagner & Rescorla, 1972). According to this equation the utility of a production will be 
gradually adjusted until it matches the average reward that the production receives. 
 



2 Natural learning interactions in an online course 

2.1 OLI platform 
We have conducted this part of the work in the context of Carnegie Mellon’s Open 
Learning Initiative (OLI; Smith & Thille, 2004), a collection of freely available online 
courses, funded by the Hewlett Foundation. OLI courses are developed collaboratively by 
teams that consist of content experts, cognitive scientists, and instructional technologists. 
The courses are designed to incorporate principles from the learning sciences and then to 
be continually refined through user testing and formative assessment.  
OLI courses do not follow the model of simply putting a textbook online for students to 
(passively) read. Rather, OLI courses are fully online, interactive courses that enact 
instruction. In other words, just like regular courses, OLI courses have many 
components, including exercises, reflective activities, problems, interactive animations 
and simulations as well as both low- and high-stakes assessments sprinkled throughout 
each module.  
 
Because of this high level of interactivity, OLI courses provide a productive platform for 
studying teaching and learning. In particular they include real students taking real courses 
within a highly instrumented system. Each student interaction in OLI is automatically 
logged, producing a rich database (e.g., individual students’ answers to specific 
questions, precise times to complete particular activities, and patterns of feedback/hint 
use). This produces “laboratory quality” data, akin to what are collected in learning 
science experiments, but with the duration (i.e., a semester) and authenticity of real 
course-based learning contexts – a combination rarely achieved in laboratory 
experiments.  
These automatically collected data have already been useful for informing various 
improvements to the OLI courses, and they have offered additional information on which 
to compare students’ learning in OLI vs. more traditional courses. In contrast, the current 
work aims to use these OLI-log data to investigate the nature of students’ learning within 
the OLI course and, in particular, the learning consequences of the various choices 
students make within OLI courses. 

2.2 Context for current study 
The current study involves two particular OLI courses, OLI-Biology (primarily) and OLI-
Statistics (secondarily). Both courses were taught in a blended mode in which students 
completed particular portions of the online course (by specific dates) and then attended 
lectures (three times a week for OLI-Biology and two times a week for OLI-Statistics). 
Besides the OLI materials in each course being substantially different in format from a 
conventional textbook, the lectures were conducted in a somewhat non-traditional way as 
well. For both the Biology and Statistics lectures, the instructors were able to track (at 
least in a loose way) students’ progress through the OLI material, and they used this 
information to adjust the content of their lectures to more directly address the kinds of 
difficulties students were facing. 



2.2.1 Biology Course Data  
From the enrollment rosters, we had access to information on students’ “home college” 
(e.g., Carnegie Institute of Technology, Mellon College of Science, or Humanities and 
Social Sciences) and their year in college (i.e., first-year, sophomore, junior, or senior). 
We also administered a beginning-of-semester survey to gather additional data about (a) 
students’ expectations for the course, (b) their beliefs about learning, and (c) their 
reported use of effective study strategies. Students’ expectations were simply measured 
by asking what they expected as their final course grade. The beliefs about learning 
questions were taken from Schommer’s (1990) epistemological beliefs questionnaire, 
specifically those questions that related to students’ belief that learning is easy and fast. 
The questions about effective study strategies were taken from Pintrich’s metacognitive 
strategies learning questionnaire (cf. Garcia & Pintrich, 1996). 
 
The primary measures of students’ learning outcomes were two paper-and-pencil, in-
class exams (given after weeks 4 and 7). There were also five high-stakes quizzes, 
administered online but outside of the OLI system. The first quiz served as a baseline of 
sorts because it occurred fairly early in week 1.  
 
In addition to these assessments, a rich data stream capturing each students’ interaction 
with the OLI-Biology system offered another source of data. From the OLI log files, we 
first culled data to measure how much students were using different parts of the OLI 
system. Specifically, we calculated the following measures: total time spent in OLI, 
number of OLI sessions initiated, number of OLI pages viewed, number of self-
assessments (i.e., low-stakes assessments within OLI) submitted, and number of times the 
objectives list was viewed. In addition, we focused on students’ interactions with a 
particular learning tool that occurred during weeks 3 and 4. The number of times students 
accessed the tool, total “steps” taken within the tool, and total amount of time spent using 
the tool were also culled from the OLI log data. All of these data describing students’ 
interactions with the OLI-Biology course – both in general and with respect to the 
particular learning tool – were used to identify patterns of what students chose to use 
within the course as well as to test for correlations between use and various learning 
measures.  
 
Finally, the general measures of students’ number of sessions connected to the OLI-
Biology course were also broken down into specific time windows within each three-
week phase of the study. These time windows were set as ever-narrowing spans of time 
leading up to the subsequent exam, namely, first two weeks of the three-week phase, next 
6 days (i.e., a week before the subsequent exam up to a day before the exam), and the day 
before the exam. These data serve as a launching point for considering how students 
distribute their study time when using the OLI course.  

2.2.2 Statistics Course Data  
Data from the Statistics course were fairly similar in that we had both paper-and-pencil 
assessments (e.g., quizzes and tests from the course) and the OLI log data that tracked 
their ongoing interactions (e.g., viewing pages, completing activities, and taking low-
stakes assessments). We did not have students’ epistemological beliefs and course 



expectations in the case of Statistics, but instead we had a baseline measure of their 
incoming statistics knowledge by administering a Statistics knowledge assessment 
developed by statistics education researchers (delMas, Ooms, Garfield, & Chance, 2006). 
This test is named the Comprehensive Assessment of Outcomes in a first Statistics course 
(CAOS), and it is a 40-item multiple choice test designed to measure students’ basic 
statistical reasoning. We also administered the CAOS test at the end of the course to 
measure students’ learning gain on those items. Note that the CAOS test was designed to 
emphasize the basic skills of statistical reasoning. 

2.3 Empirical results on learning 

2.3.1 Biology: Basic learning and performance results and individual 
differences 
Table 2.1 shows the descriptive statistics for each of the background measures on 
students’ demographics (major, year in school). These background variables show that 
our study sample consisted of mainly science and engineering majors and that the 
majority of the students were in their first year of college. This is consistent with many 
introductory science courses’ enrollments. It is also worth noting that the average final 
course grade expected by students in this course was 3.6 on a 4.0 scale (i.e., a low “A”). 
And, the two key indices from the epistemological beliefs and learning strategies survey 
showed that (a) students tended not to believe that “learning is easy/fast” (i.e., average of 
2.1 on a 1 to 7-point scale, where 1 = strongly disagree and 7 = strongly agree) and (b) 
students tended to use effective study strategies but not overwhelmingly so (i.e., average 
of 4.6 on a 1 to 7-point scale). These two results are rather encouraging with respect to 
the students being in a good position to learn science effectively.  
 
Table 2.1: Number of students in various major areas and in different years of college 
Major Area % of Students Year in College % of Students 
Engineering 25 First year 66 
Science 41 Sophomore 20 
Humanities 16 Junior 9 
Other 18 Senior 5 
 
Table 2.2 shows the results of the primary learning assessments mentioned above, namely 
the two exams and five quizzes, all of which were administered outside of the OLI 
system. One methodological difficulty that these scores reveal is a potential ceiling effect 
in the quiz scores. This would suggest that there may be a restricted range in students’ 
scores, making it difficult to show correlations between students’ learning behaviors and 
their quiz/exam performance. 
 
 
 
 
 
 
 



Table 2.2: Mean scores on primary assessments 
Assessment Score (out of 100) 

Exam 1 73 
Exam 2 66 
Quiz 1 81 
Quiz 2 92 
Quiz 3 85 
Quiz 4 86 
Quiz 5 89 

  

2.3.2 Biology: Learning/study-strategy results and relationships 
The next set of measures we collected come from the automatically logged OLI data. 
These measures describe students’ use of the OLI materials. Table 2.3 shows means of 
the five “OLI usage” measures discussed above. Looking at these descriptive statistics, it 
is noteworthy that students did not make much use of the lists of objectives for each 
module. In fact, the low number of times objectives were viewed on average is actually 
the result of the majority of students never accessing the objectives lists, and a very small 
minority of students viewing them multiple times for each module. This issue warrants 
some further consideration in terms of the role these objectives should play. It is also 
worth noting that the average number of self-assessments submitted by students is far 
lower than the number of self-assessments made available to students in the course of this 
study. In fact, on average, these numbers indicate that students were working through and 
submitting only about half of the possible self-assessments available in the OLI-Biology 
materials. Again, this is an issue worth investigating further.  
 
Table 2.3: Averages for the five OLI usage measures 
Measures of OLI use Average Use 
Number of self-assessments 7.2 
Number of pages viewed 26.9 
Number of times objectives viewed 3.2 
Number of sessions initiated 13.2 
Total time viewing pages 2158.1 

 
Relating the OLI usage and performance metrics, the number of objectives viewed was a 
marginally significant predictor of exam performance. This suggests that there may be a 
study strategy of self-monitoring that differentiates students and that, not surprisingly, 
predicts better learning outcomes. Of the remaining measures of OLI system usage, total 
time was the only measure that showed a correlation with exam performance.1 In 
particular, total time was significantly correlated with exam performance, but only when 

                                                 
1 Note that for these analyses correlating total time with exam performance, we excluded 
students who did not use the OLI-Biology course at all (9 students altogether) as well as students 
whose total time was so small as to be nearly equivalent to not having used the OLI-Biology 
course (an additional 22 students). The students with such low measures for total time would not 
contribute meaningfully to an analysis of how much engagement with the OLI course predicts 
learning outcomes. Note that when these students are included in the analyses, the results are 
similar but simply weaker.   



the period of usage was measured separately for the time spent before each exam. That is, 
students’ OLI time-on-task up to week 4 predicted their exam scores for exam 1 (but not 
exam 2), and their time-on-task from weeks 5, 6, and 7 predicted their exam scores for 
exam 2 (but not exam 1). Still, this linear relationship is a rather a weak one as Figure 2.1 
shows. Further investigation supported the relationship’s nonlinear trend in that a log-
linear regression of exam performance on total time (with quiz 1 as a covariate) showed a 
significant relationship for the corresponding exam to time-on-task period (i.e., exam 1 
for weeks 2-4 and exam 2 for weeks 5-7) but not vice versa. This suggests that the more 
students engaged with the OLI materials, the greater their corresponding exam score. The 
lack of a relationship between OLI time-on-task and the non-corresponding exam scores 
suggests that this former positive relationship is not simply the result of better students 
showing greater engagement and higher scores, but rather it shows a content-specific 
relationship between what students spend time studying in the OLI-biology course and 
how well they perform on tests of that OLI material.  

TOTTIME
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Figure 2.1: Total OLI time (TOTTIME spent before a given exam) as a predictor of the 

corresponding exam score 
 
A more detailed analysis of students’ interaction with the OLI-Biology materials was 
performed in the case of a particular interactive learning tool that appeared in weeks 3 
and 4 of the course. This tool offered students practice working with functional groups, 
and it provided detailed logging of (a) the time students spent working with the tool, (b) 
the number of times students revisited it, and (c) the total number of exercises (also called 
“steps”) that they worked through with it. What is striking about the second and third of 
these measures is that they showed a fairly wide distribution.  So, it was possible to look 
for correlations with students’ learning outcomes. As in the case of students’ total time 



predicting only the corresponding OLI-based exam scores, we would predict that our 
measure of students’ engagement with this functional groups tool would be correlated 
with students’ performance on any quiz related to functional groups but not correlated 
with their performance on other quizzes. Because we have students’ scores on five high-
stakes quizzes and only quiz 3 related to functional groups, we have an opportunity to test 
this prediction. Indeed, the correlations between students’ quiz 3 performance and both 
“number of visits to the function groups tool” and “total number of exercises (steps) 
completed with the functional groups tool” were significant and positive (r=.30,). At the 
same time, students’ quiz 1, 2, 4, and 5 scores were not significantly or not as strongly 
correlated with these two measures of engagement with the functional groups tool (all r’s 
< .16). Specifically, the strength of the engagement-performance relationship was 
significantly stronger for quiz 3 than for the other quizzes. This set of results supports the 
notion that the more students worked with the functional groups tool, the better they 
performed on a functional groups quiz. The fact that their degree of engagement with the 
functional groups tool did not predict performance on other topic quizzes rules out the 
alternative explanation that such a correlation is simply the result of better students doing 
better overall.  
 
The last category of quantitative results involves specific time-based measures of 
students’ use of the OLI-Biology course. The total number of OLI sessions were broken 
down into three time windows relative to the exam date: the day before the exam, the 
preceding six days (i.e., a week before up to a day before the upcoming exam), and the 
preceding two weeks (i.e., the first two weeks of a new exam phase). If students’ 
distribution of study sessions working with the OLI-Biology course were evenly 
distributed across time, we would expect these three time windows to present data in the 
ratios of 1:6:14 (for the number of days in each time window). As Table 2.4 shows, 
however, students’ usage of the OLI-Biology course was not distributed in this way. In 
fact, students made almost as many visits to the OLI-Biology course in the day before an 
exam as compared to the preceding six days put together. 
 
Table 2.4. Number of OLI sessions in different windows, relative to upcoming exam 
Time window before exam Average # of Sessions 
Day before exam 1.6 
“Week” before exam (not incl. day before) 2.3 
All other times (preceding week before) 7.3 

 

2.3.3 Also Statistics 
For a similar analysis of students’ learning and the effectiveness of the OLI course for 
Statistics, see Lovett, Meyer, and Thille (in press). 

2.4 Model of study behaviors and learning 

2.4.1 Model (qualitative and mathematical) 
As a first step in modeling students’ study behaviors and ultimate learning gains, we 
reviewed the log data to collect various measures of students’ choices regarding what 



material to study. For example, which activities do students choose to do (or not to do) 
and how many times do they choose to repeat a given activity? Similarly, do students 
have different profiles of behavior when it comes to choosing to review a previously 
viewed topic (e.g., re-visiting a given page, interactive activity, or assessment)? It is 
worth noting that, at some level, all of the OLI components are optional activities for 
students to complete. Students’ progress through the OLI material was not being directly 
graded.  
 
Table 2.3 from above shows that there was a wide range in students’ usage of the 
different OLI components. Perhaps more importantly for current purposes, there was a 
range of usage across students for a given OLI component. For example, even though the 
average use of the “learning objectives” pages was low, this number reflects large 
differences in whether and how students used these pages: many students did not view 
these pages at all, several students viewed them infrequently, and a few students viewed 
them often. This was one metric that showed a relationship with learning outcomes in the 
course: the more students viewed the objectives pages, the better their learning. This is 
suggestive of a meta-cognitive advantage in which students who are more interested in or 
focused on the objectives of their own learning (i.e., what they are supposed to be able to 
do at the end of each OLI unit) are more effective at learning.  
 
The other OLI usage measure that was shown above to relate to performance was the 
total time students spent using the OLI course. This predictive capacity of the time-on-
task variable, however, appeared to be specific in that the relationship only held between 
study time before a given exam and performance on that exam. This result suggests that 
the more time students spent studying a particular set of OLI materials, the better they 
learned those particular materials.  
 
But besides investigating students’ usage of different components of the OLI course and 
their overall time using the course, we sought to investigate students’ patterns of use and 
the adaptivity of their use of the OLI course. In particular, we were interested in any 
differences in the degree to which students chose to review material they had already 
covered, and if so, the degree to which students’ choices to review (or not to review) 
were sensitive to their performance/progress at that point in time. One can image several 
possibilities (with differences in apparent adaptivity): 

• Students who rarely or never review previous viewed pages and rather forge 
ahead through the material regardless of their situation. 

• Students who go back to review all or most of the material, and do so in a way 
that does not depend on their learning situation. 

• Students who are more likely to review a topic (or re-do an activity) when their 
current progress suggests they are performing below expectations, and who are 
more likely to forge ahead when their current progress looks strong. 

 
Note that, according to these descriptions, only the third case mentioned involves 
students who are sensitive to current conditions and thus adapting to their own learning 
needs. This would be an example of self-regulated learning in that the students are 



monitoring their own situation enough to be aware of a need to review and then actually 
go back to review relevant material.  
 
Based on an analysis of a sample of students, the rough breakdown into these three cases 
was a follows: 

• Approximately 20% of students simply do not review previous material 
(regardless of their current performance). Interestingly, this profile goes together 
with a pattern of skipping optional, low-stakes assessments. 

• Approximately 20% of students go back to review much of the material, either 
doing so in a way that does not depend on their current situation or that follows 
the opposite pattern relative to their apparent needs (i.e., going to back to review 
material that was already well understood). 

• Approximately 60% of students are more likely to review when they have not 
fully understood a topic and are less likely to review when they have understood a 
topic.  

 
These three profiles need not be mapped onto individual students per se, but rather they 
may reflect different study strategies that students may have in their repertoire. In other 
words, in a basic ACT-R model of students’ study strategy choices, we posit three 
different strategies (written below in English form): 
 
ALWAYS-MOVE-ON: 
When you have come to the end of a current topic, then move on to the next topic in the 
sequence. 
 
ALWAYS-REVIEW: 
When you have come to the end of a current topic, then go back to repeat an activity. 
[Variations on this strategy might involve repeating a particular kind of activity or even 
repeating a particularly high-scoring topic.] 
 
REVIEW-AS-NEEDED: 
When you have come to the end of a topic and perceived performance is below 
expectations, then go back to repeat a relevant activity. 
 
Note that this model posits an interesting strategy choice situation whenever the student 
comes to the end of a unit having performed below expectations. In this situation, all 
three of the above strategies are potentially applicable. In this situation, the model 
chooses the one to fire that has the highest estimated utility (where utility is a measure of 
the time-weighted reward associated with that strategy, see Introduction). The higher a 
production’s utility, the more likely it will be selected. In our model, the ALWAYS-
REVIEW strategy begins with a lower utility because it is necessarily more costly (in 
time) and less “rewarding” than its competitors. A straightforward application of the 
ACT-R utility-based choice mechanism (cf. Equation 1.7) can produce the distribution of 
study strategies we observe.  
 



This leads to the question of where those strategies (i.e., productions) and their associated 
utilities come from. As mentioned in the Introduction, a utility value is updated based on 
ones’ experience in the world after having applied the corresponding production, i.e., 
utility is increased as a function of the reward received upon applying the production. 
This implies that the more rewarding a production is, the higher its utility and hence the 
more likely it will be selected in the future. This leads to two predictions: (1) Across 
time, students should learn to prefer the REVIEW-AS-NEEDED strategy because it 
should lead to the best reward, and (2) Students with prior knowledge/experience in 
effective learning should begin with a bias toward the REVIEW-AS-NEEDED strategy. 
 
Regarding the first prediction, we did find that students increased their tendency to 
review as needed across time in the OLI course. Specifically, students’ tendency to 
review past material decreased across units in the cases where they were performing well 
and their tendency to review past material increased across units in the cases where they 
were performing poorly. These two trends combined led students to show review 
behaviors that were sensitive to performance: When students’ performance was low (less 
than 2/3 of questions answered correctly), students chose to review 18% of the time, and 
when their performance was high (greater than 2/3 of questions answered correctly), 
students chose to review less than 10% of the time. Put another way, students’ average 
performance on topics where they ultimately chose to do some review was 48% whereas 
the average performance on topics where they ultimately chose not to review was 67%. 
 
Regarding the second prediction, none of our baseline or demographic/beliefs measures 
was a significant predictor of students’ tendency to use the ALWAYS-MOVE-ON, 
ALWAYS-REVIEW, or REVIEW-AS-NEEDED approach. In the case of our measures 
of epistemological beliefs and study strategies, it may be that our sample had a somewhat 
restricted range that impaired the chance of finding such a relationship. So, in our 
modeling, we simply started different models (representing different potential students) 
with different initial values for the utilities of the three productions and let utility-value 
learning carry on from there. 
 
These explorations of models for choosing to review or not to review revealed an 
interesting “absorbing state” in some cases that appeared to mimic a profile shown by 
some students as well. This is the situation where the model has a high-utility for the 
ALWAYS-MOVE-ON production such that the other two competitors do not get a 
chance to fire (and hence to learn to be preferred based on experience). In students, this is 
the profile in which students do not go back to review even when they arguably should 
(e.g., they have performed poorly/learned little from a given unit in the course). How can 
the model get absorbed into the state of always moving on? Given that the utility learning 
mechanism of ACT-R is updating utility values as a function of experienced reward, and 
given that the experienced reward is a measure of net gain (i.e., goal/value achieved 
minus time spent achieving it), one can see that the ALWAYS-MOVE-ON production 
has a time-cost advantage over its competitors. In other words, it’s always faster to move 
on. In the case of students’ evaluations of reward for the purposes of strategy choice, it 
seems that students value time over accuracy (Lovett & Chang, 2007). So, we may have 
found in this OLI learning situation an example of students selecting a low-cost strategy 



even when a more accurate/rewarding one exists. This could occur among students if they 
come in to the OLI course without any representation of the ALWAYS-REVIEW or 
REVIEW-AS-NEEDED productions or with such low utilities for these approaches that 
they never select a review strategy. If this should happen, no matter how effective the 
system’s utility-learning mechanism is in principle, our model cannot discover a review-
based strategy. This suggests that a key opportunity for efficient training – a way to tap 
into the natural adaptive, utility-learning mechanism in ACT-R – is to create an 
environment that encourages students to at least try a strategy that involves review. 
Moreover, whenever students do review and then show success in reaching a goal (or 
when students choose to move on and then show poor performance), the value of the goal 
(big or small for the amount of time spent) should be highlighted. 

2.5 Implications for training 
Based on the empirical work conducted in this part of the project, there are several 
implications for training and feedback that relate to fostering students’ effective strategy 
choices in learning from online courses. While these implications would need to be tested 
in multiple settings to be established as general, we posit them here based on the fact that 
(a) they are consistent with the empirical results of the current work and (b) they are 
based on predictions derived from the ACT-R architecture and, as such, are consistent 
with a much broader set of research on learning and performance. The first two 
implications involve strategies for increasing students’ tendency to review relevant 
material (rather than always moving on to the next unit). And the third implication 
involves giving students ample practice with feedback so that the learning strategies they 
choose to apply can be refined across time. 
 
First, create the online learning environment in such a way that students are encouraged 
to try a strategy that involves reviewing previously viewed material appropriately. This 
guideline comes from the result that a nontrivial proportion of students never (or very 
rarely) spent any time reviewing past material. And yet, given the complex material 
involved in the OLI courses, it almost goes without saying that every student could 
benefit from some review of a particular piece of the course. Our modeling results show 
that, if an effective learning strategy such as “reviewing past material when needed” is 
never attempted in the first place, this strategy will never get a chance to become more 
prominent because greater use of a strategy requires an increase in that production’s 
relative utility, which in turn requires some experience at applying the production.  
 
Strategies that might foster students’ review of past material include raising students’ 
awareness about the viability of going back to a previous section. In other words, one 
hypothesis for why students didn’t review past material (even when they could have 
benefited from doing so) is that they did not represent a “review-based” strategy in their 
repertoire. So making this option explicitly available to students could increase their 
chances of trying the strategy (and then the natural learning mechanisms for promoting 
that strategy could unfold). For example, in one of the OLI courses, for a subset of the 
topics, an explicit choice point was added after the unit’s low-stakes assessment. In this 
way, after students received their feedback on the assessment, they would be prompted to 
answer the question: “Did I get this yet? If yes, continue on; if not yet, click here to 



review this unit.” Although we did not conduct an official experiment to test the 
effectiveness of this intervention, preliminary analyses suggest that it did increase 
students’ tendency to review in that they clicked the review button more than half of the 
times they encountered it (and yet only chose to review past material less than a quarter 
of the time without the button). Other strategies to encourage students’ review might 
involve posing a question that (implicitly or explicitly) directs a majority of students back 
to a previous piece of the course in order to find an answer. This strategy could serve to 
increase the utility of “going back” in general if students found that doing so was a quick 
and easy way to find a solution. 
 
The second implication for training involves setting up the utility structure of the learning 
environment so that applying an effective review strategy will in fact lead students to 
better outcomes (i.e., faster and/or better learning). This might involve designing the 
assessments that are administered outside the learning environment in a way that taps 
students’ deeper conceptual understanding of the material (i.e., a level of learning that 
would likely require multiple passes through the information or several practice 
opportunities). In contrast, if students are able to perform well on quizzes and exams after 
only having skimmed through the learning materials once, then it is a signal that students 
are actually following what would be predicted according to a rational choice model. In 
other words, the goal of optimal learning is not to encourage students to review material 
in all contexts but according to their needs and the benefits that can be gained through the 
effort of extra review. Finally, when students do take action to review past material and 
show improved performance (or conversely when they do not review past material and 
show poor performance) these implicit payoffs of their actions can be highlighted in a 
way that might inform subsequent actions. For example, in an online learning 
environment, student data are continuously collected and can be “replayed” to students as 
evidence for effective strategies that actually work. 
 
The third implication for training and feedback involves making sure that students have 
sufficient practice at applying the strategies you want to promote. In the case of the 
current work, we identified appropriate review strategies as the apparent gap in students’ 
skill set. So the strategy here would be to give students ample practice at reviewing 
relevant past material. In particular, at the end of each unit (or even sub-unit pieces), 
students could be encouraged to review past material as appropriate. Moreover, students’ 
actions could be tracked as they work in the online learning environment and then, when 
they do go back to previous material, an explicit piece of feedback could be offered. 
Although giving students practice and feedback on metacognitive skills is difficult – 
because the actions of applying effective strategies usually occur at a level above the 
content being taught – such instructional interventions could be especially helpful to the 
degree that they reify what is an abstract piece of effective learning. 
 



 
 
 

3 Instance-based modeling of UAV maneuvers 

3.1 UAV task 
The goal of this task is to create models of basic aircraft maneuvering using the ACT-R 
cognitive architecture in order to explore implications for teaching. ACT-R is a 
computational theory of human performance that incorporates procedural (rule-based) 
knowledge and declarative (fact-based) knowledge. In this task we use data collected 
from expert pilots to provide instances of declarative knowledge that indicate an 
appropriate action to take given a particular circumstance. 

3.1.1 Synthetic Task Environment 
The Predator UAV Synthetic Task Environment (STE) is a realistic simulation of the 
flight dynamics of the Predator RQ-1A System 4 UAV with built in tasks and data 
collection capabilities. The core aerodynamics model of the UAV STE is used in the 
training system for Air Force Predator pilots at Indian Springs Air Force Auxiliary Field 
in Nevada. The UAV STE is essentially a scaled down version (hardware wise) of the 
training system. The three tasks built on top of the core aerodynamics model include: the 
Basic Maneuvering Task, in which a pilot must make very precise, constant-rate changes 
in airspeed, altitude and/or heading; the Landing Task in which the UAV must be guided 
through a standard approach and landing; and the Reconnaissance Task in which the goal 
is to obtain simulated video of a ground target through a small break in cloud cover. For 
each task, there are multiple scenarios which manipulate various performance 
requirements (e.g. turn right, turn left and climb) and external conditions (e.g. wind, no 
fly zones). During performance of a task, the values of approximately 100 different 
aircraft and human performance variables are recorded every 200 msec. The design of 
these synthetic tasks is the result of a unique collaboration between behavioral scientists 
and expert pilots of the UAV. The aim in developing the tasks was to identify important 
aspects of the UAV pilot’s overall task—aspects that tax the key cognitive and 
psychomotor skills required of a UAV pilot. They are tasks that lend themselves to 
laboratory study, yet do not fall prey to oversimplifications. Tests using military and 
civilian pilots showed that experienced UAV pilots perform better in the STE than pilots 
who are highly experienced in other aircraft but have no UAV experience, indicating that 
the STE is realistic enough to tap UAV-specific pilot skill.  
 



 
 

Figure 3.1: The UAV Synthetic Task Environment (STE) 
 

 
 

Figure 3.2:  Detailed view of the STE screens. 

3.1.2 ACT-R representation of environment 
Computational cognitive models “see” their visual environment by moving visual 
attention around within a digital representation of that environment. This is fairly trivial 
with simple, static tasks that are implemented in the same software language as the 
cognitive model, but it is more complicated when the architecture must interface with an 
external simulation. We took advantage of the work done by Gluck et al. (2003) to create 
an ACT-R 5.0 model of basic aircraft maneuvering that could interface with the Predator 
STE. Their approach in interfacing models to the STE was to re-implement the visual 
displays of the STE in Lisp, the programming language in which ACT-R is written. The 
focus of the reimplementation was on matching the information provided by the visual 
display without necessarily reverse engineering the full graphics display of the STE. This 
was facilitated by the use of digital readouts for the flight instruments (other than the 
horizon line and reticle) in the STE, such that the model was not required to process an 
analog device in order to determine the value of the flight instrument. In the case of the 
horizon line and reticle, ACT-R returns a digital value for pitch and bank to the model (as 
reflected in the orientation of the horizon line with respect to the reticle), even though a 
graphic depiction of the horizon line and reticle is displayed. Other than the visual 



displays, the Predator STE provides a Variable Information Table (VIT) data structure 
that contains data on most of the flight parameters of the UAV. 
 

 
 

Figure 3.3: Lisp-based visual display of STE used by the ACT-R model. 

3.1.3 Basic maneuvers 
For a Predator pilot, the knowledge and skills necessary to effectively maneuver are 
essential to success. A natural place to begin a research program aimed at developing a 
fine-grained cognitive process model of a Predator pilot/teammate is the basic 
maneuvering task. This task was inspired by an instrument flight task originally designed 
by Wickens and colleagues at the University of Illinois at Urbana-Champaign (Bellenkes, 
Wickens, & Kramer, 1997). The task requires the pilot to fly a number of distinct 
instrument flight maneuvers. Preceding each maneuver is a 10 second lead-in during 
which time the pilot is asked to stabilize the aircraft in straight and level flight. Following 
the lead-in is a timed maneuver of 60 seconds during which time the pilot maneuvers the 
aircraft by making constant rate changes to altitude, airspeed, and/or heading, depending 
on the maneuver, as specified in Table 3.1. 
 
Table 3.1: Goals of the basic flight maneuvers. 
Maneuver Airspeed Heading Altitude 
1  Decrease 

67–62 knots 
maintain 
0° 

maintain 
15,000 feet 

2 maintain 
62 knots 

Turn Right 
0-180° 

maintain 
15,000 feet 

3 maintain 
62 knots 

maintain 
180° 

Increase 
15,000-15,200 feet 

 
  



3.2 Instance data of expert performance 

3.2.1 Variables 
The STE collects data five times per second for 60 variables, including heading, altitude, 
airspeed, bank angle, pitch, and RPM. Participants performed basic maneuvers over a 
number of trials, allowing some aspects of performance to stabilize. For example, Figure 
3.4 shows that one participant converged on a bank angle of 13 degrees for maneuver 2 
after 19 trials. 
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Figure 3.4: Three trials of bank angle as a function of time. 

3.2.2 Preprocessing of training data 
Every trial contains 5x70=350 instances of performance parameters and control settings. 
Using all of these instances would not be a realistic training task for humans, so an 
automated procedure was developed to preprocess the data and limit the number of 
training instances.  
 
In each maneuver the goal is to change one performance parameter (airspeed, heading, or 
altitude) while keeping the others constant. The pilots take actions that change control 
settings (RPM, bank angle, pitch) which then change performance parameters. For 
performance parameters that were intended to change, the change usually occurred in a 
continuous manner. For performance parameters that where intended to stay constant, 
they usually deviated from the initial value then returned as pilots made corrections. 
Instances where performance parameters started to return to their original value after a 



deviation were chosen as examples where pilot saw a deviation and effected a desired 
change. Control settings for changing performance parameters to goals usually had 
deviations that returned to stabilized constant values. Instances where control setting 
started to return to stable values after a deviation where chosen as examples where pilots 
attempted to maintain a desired control setting. Control settings for maintaining constant 
performance parameters usually had a high variability. These features can be seen in 
Figure 3.5.  
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Figure 3.5: Pitch values over time for different maneuvers. 
 

3.3 Model creation 
The model of basic aircraft maneuvering used in this study is based on an instrument 
flight strategy called the “Control and Performance Concept” (Air Force Manual on 
Instrument Flight, 2000). This aircraft control process involves first establishing 
appropriate control settings (pitch, bank, power) for the desired aircraft performance, and 
then crosschecking the instruments to determine whether the desired performance is 
actually being achieved.  
 
According to the Air Force Manual on Instrument Flight, a key to expert flight 
performance is knowledge of the appropriate control settings needed to obtain desired 
flight performance. For example, a pitch of 3 degrees and an engine RPM of 4300 will 
maintain straight and level flight of the UAV at 67 knots over a range of altitudes and 
external conditions. The expert pilot need only set the appropriate pitch and engine RPM 
to obtain the desired performance, subject to monitoring and adjustment based on 
variable flight conditions like wind and air pressure. 
 
The focus of this project is to create models that use appropriate control settings based on 
data from expert performance. This allows the easy creation of models by supplying 
expert data instead of using that data to write ACT-R code. In theory, to obtain level  



Table 3.2: Control setting and action used to change performance parameter. 
Performance Parameter Control Setting Control Action 
Airspeed RPM Throttle (front, back) 
Heading Bank Angle Stick (left, right) 
Altitude Pitch Stick (front, back) 
 
flight the pilot should use power to get the desired airspeed, and use pitch used to 
maintain altitude (Jeppesen Instrument/Commercial Manual, 1998). The model perceives 
a current performance parameter (airspeed, heading, or altitude), retrieves a desired 
control setting (RPM, bank angle, or pitch) based on that parameter, perceives the current 
control setting, and takes appropriate action to obtain the desired control setting. Table 
3.2 shows the control setting and control action used to change performance parameters. 
Figure 3.6 shows the information used to determine control response. 

3.3.1 Perceiving the environment 
The model uses procedural knowledge developed by Gluck et al. (2003) to focus the 
visual buffer of ACT-R on instrument display values in the Lisp representation of the 
STE environment. These display values include the lead-in clock time, performance 
parameters (airspeed, heading, altitude), and control settings (RPM, bank angle, pitch). 
Once the lead-in clock time reaches zero, it is no longer attended. As mentioned in 
section 3.1.2, perception was facilitated by the use of digital readouts for the flight 
instruments (other than the horizon line and reticle) in the STE, such that the model was 
not required to process an analog device in order to determine the value of the flight 
instrument. In the case of the horizon line and reticle, ACT-R returns a digital value for 
pitch and bank to the model (as reflected in the orientation of the horizon line with 
respect to the reticle), even though a graphic depiction of the horizon line and reticle is 
displayed. 

3.3.2 Instance-based decisions 
Instances from expert data are retrieved by matching the current performance parameter 
deviation to the deviation stored in the instance. In a dynamic environment such as flight, 
there may not be an instance that exactly matches current conditions. The ACT-R theory 
provides a way to retrieve the nearest instance with partial matching. As was mentioned 
earlier, with partial matching, the instance with the highest similarity has the highest 
activation and is more likely to be retrieved (cf. Equation 1.5). The model uses the same 
parameters (activation noise=0.25, mismatch penalty=1.5) and ratio similarity measure 
for partial matching that were used by Lebiere (1998) for instance-based learning of 
arithmetic facts. 
 
 
 



Current Param + Instance + Current Setting   + Deviation = Response

Curr-airspeed: 63 Stim-param: Airspeed Curr-rpm: 4435 Parameter: Rpm Isa: Move-throttle
Desired-airspeed: 62 Stim-deviation: 2 Desired-rpm: 4362 Deviation: 70 Direction: High
Airspeed-deviation: 1 Resp-param: Rpm Direction: High Magnitude: Small

Resp-value: 4362 Magnitude: Small R: 0.5
Theta: 3.14  

Figure 3.6: Information used to determine control response. 

3.3.3 Vehicle control 
The model uses procedural and declarative knowledge developed by Gluck et al. (2003) 
to map control setting value goals onto control actions for the stick and throttle that are 
sent to the STE. The declarative knowledge maps deviations in current control settings 
from desired control settings to response direction and magnitude. The procedural 
knowledge maps the direction and magnitude to r and theta values for the throttle and 
stick. Figure 3.7 shows how perception, decision, and control come together in a partial 
trace of model performance. In the trace, the model is executing maneuver 2 and using 
the current heading to determine the appropriate control action. 
 

 Time 12.460: Sync Fired 
 Time 12.510: Retrieve-Crosscheck-Intent Fired 
 Time 12.510: Ci-Hlr-Pitch-To-Heading Retrieved 
 Time 12.545: Module :VISION running command ENCODING-COMPLETE 
 Time 12.545: Vision sees HLR710 
 Time 12.560: Crosscheck-Intent-Set-Context Fired 
 Time 12.610: Crosscheck-Retrieve-Instrument Fired 
 Time 12.610: Heading-Indicator Retrieved 
 Time 12.660: Crosscheck-Find-Instrument Fired 
 Time 12.660: Module :VISION running command FIND-LOCATION 
 Time 12.660: Vision found LOC614 
 Time 12.710: Crosscheck-Attend-Instrument Fired 
 Time 12.710: Module :VISION running command MOVE-ATTENTION 
 Time 12.795: Module :VISION running command ENCODING-COMPLETE 
 Time 12.795: Vision sees TEXT713 
 Time 12.845: Crosscheck-Encode-Instrument-Not-Hlr-Stim Fired 
 Time 12.845: Instance-Heading-Bank-3 Retrieved 
 Time 12.895: Retrieve-Param-From-Instance Fired 
 Time 12.945: Crosscheck-Retrieve-Instrument Fired 
 Time 12.945: Bank-Angle-Indicator Retrieved 
 Time 12.995: Crosscheck-Find-Instrument Fired 
 Time 12.995: Module :VISION running command FIND-LOCATION 
 Time 12.995: Vision found LOC649 
 Time 13.045: Crosscheck-Attend-Instrument Fired 
 Time 13.045: Module :VISION running command MOVE-ATTENTION 
 Time 13.130: Module :VISION running command ENCODING-COMPLETE 
 Time 13.130: Vision sees TEXT712 
 Time 13.180: Crosscheck-Encode-Instrument-Not-Hlr-Resp Fired 
 Time 13.230: Desired-Bank-Angle-From-Instance Fired 
 Time 13.280: Crosscheck-Set-Deviation-Bank-Angle Fired 
 Time 13.280: Bank-Angle-Dev--2 Retrieved 
 Time 13.330: Crosscheck-Retrieve-Deviation-Bank-Angle Fired 
 Time 13.380: Assess-Bank-Angle-Left-Small Fired 
 Time 13.380: Module :MOTOR running command MOVE-STICK 
 Time 13.430: Module :MOTOR running command PREPARATION-COMPLETE 
 Time 13.430: Done-Assess-Bank-Angle Fired 
 

Figure 3.7: Partial model trace for determining control action based on current heading. 



3.4 Model performance 

3.4.1 Comparison to optimal performance 
Optimal performance was considered to be a constant change in performance parameter 
from initial conditions to goal conditions from the end of the lead-in clock at 10 seconds 
to the end of the trial at 70 seconds. Formulae for optimal values are found in Table 3.3. 
RMS deviation from optimal performance was calculated in the following manner: 

1. For each sample, loop through the UAV states array and take the difference 
between uav_state_actual and uav_state_desired and square it. 
o For heading, the values are adjusted so that they will always be between 180           

and -180 degrees.  
2. Sum all the samples collected in step 1. 
3. Total RMS = square-root (total_sigma_of_all_samples / 

total_number_of_samples) 
Participants were considered to pass the maneuver if the RMS deviation of performance 
parameters was less than the criterion value found in Table 3.3. 
 
Table 3.3: Optimal value formulae and RMS criterion for basic flight maneuvers. 
Maneuver Changed 

Parameter 
Initial 
Value 

Goal 
Value 

Optimal  
Value 

RMS 
Criterion 

1 Airspeed 67 62 -1/12*time+67+5/6 1.75 
2 Heading 0 180 3*time-30 7.50 
3 Altitude 15000 15200 10/3*time+14966+2/3 25.00 

 
An initial model that retrieved instances of RPM values based on current airspeed was 
able to pass maneuvers two and three but not one. This is because the main control 
settings for maneuvers two and three (bank and pitch) indicate the change of desired 
direction (bank right and positive pitch) and therefore performance parameters (heading 
and altitude) are changed correctly. The main control setting for maneuver one (RPM) 
does not indicate a change in desired direction and therefore the performance parameter 
(airspeed) does not change. 
 
An improved model was created that retrieved change in RPM instead of RPM. The 
model then calculated a desired RPM based on this change. This model was able to pass 
all three maneuvers. Figure 3.8 shows the RMS deviation for the model for maneuver 1 
compared to the last three trials of the best pilot and the criterion value for passing. 
Figures 3.9 and 3.10 show the same comparisons for maneuvers 2 and 3. Note that due to 
the scheduling of maneuvers for pilots, the last three trials are not the same for the 
different maneuvers. 
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Figure 3.8: Airspeed deviation in maneuver 1. 
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Figure 3.9: Heading deviation in maneuver 2. 
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Figure 3.10: Altitude deviation in maneuver 3. 

3.4.2 Comparison to expert performance 
In addition to being compared to optimal performance, the model performance can also 
be compared to expert performance. Looking at the last trial of the best pilot, results from 
maneuver 2 demonstrate how the model can produce similar performance while drawing 
on a subset of the training instances. Figure 3.11 shows the performance heading 
deviation as a function of time for the model and pilot. Figure 3.12 shows bank angle as a 
function of heading deviation for the model and pilot, with instances plotted in yellow. 
One reason that the model produces performance with a smaller RMS deviation than the 
expert is that feedback delays result in an averaging of the instances of extreme bank 
angle values. 
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Figure 3.11: Heading deviation as a function of time for the model and pilot. 
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Figure 3.12: Bank angle as a function of heading deviation for the model and pilot. 



 

3.5 Possible Improvements 
Although the model passed all three basic maneuvers, the deviation from optimal 
performance for model performance was sometimes greater than that of pilot 
performance. This could be due to poor instances chosen by the preprocessing procedure 
and the model’s lack of representation of global time. Since the preprocessing procedure 
focuses on a return of deviation to the norm, constantly increasing or decreasing control 
settings may not be noted. Adding a representation for global time could provide a way to 
add instances of particular control settings for particular times.  

3.6 Implications for training 
The model that successfully learned basic flight maneuvers uses instance-based examples 
of expert performance. For a human to acquire the same information, the examples would 
have to either be learned from unstructured observation or from structured training. In a 
complex dynamic task such as flight, there are too many parameters to memorize all of 
them at any particular instant, and it is unlikely that a trainee would notice critical 
parameter combinations by chance. Therefore it is important to explicitly train what 
information is needed to make control decisions. We have also found that time is a 
critical factor in dynamic tasks. Instance-based training that does not include a 
representation for global time needs to incorporate variables that indicate rate and 
direction of desired change. Again, these variables need to be explicitly visible to the 
student. Once training instances are made explicit, the learning systems of the model and 
human can be used to make informed decisions given a particular context. 

4 Conclusions 
In modeling both the biology and flight maneuver domains, it was found that information 
needed for good performance is at some level available to the trainee but might not be 
used. In the biology domain, the option to re-visit a previous topic is implicitly available. 
In the flight maneuver domain the rate of change information is indirectly available. The 
key insight for training is to make explicit to the student these aspects of the 
environment/representation so that the natural learning mechanisms can unfold in more 
productive ways. This relates to the idea of optimal training because our goal is to take 
best advantage of the human learning system. Essentially, the path to optimal training in 
both these cases involves finding the key domain feature to which learning progress is 
very sensitive. Based on our results, we would posit that explicitly training on these key 
features would promote more efficient learning. This position is in line with results such 
as Klahr and Nigam (2004), which show that direct instruction is more effective than 
discovery learning. 
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